TERMS OF REFERENCE

Procurement of Geographic Information System (GIS) Software and Services

A. BACKGROUND

A.1 PROCURING ENTITY

The National Security Council (NSC) is the principal advisory body on the proper coordination and integration of plans and policies affecting national security. It oversees the implementation of national security policies and directives and has the duty to carry out planning and coordination of national security related programs.

The Presidential Situation Room (PSR), managed by the NSC, is the hub for gathering or collecting intelligence and situation reports. It is manned by duty officers and staff coming from various agencies from the intelligence sector. They have the primary task of performing environmental scanning, continuous monitoring, and preparing the daily PSR Report for the President. However, during crisis situations, the PSR serves as the venue or the “war room” for the National Crisis Management Committee. It is also a facility wherein the President can be briefed on the crisis situation and emerging events that have the potential to become a national security concern.

A.2 PROJECT OVERVIEW/OBJECTIVES

In the disposition of the abovementioned functions, the NSC intends to procure a Geographic Information System (GIS) software that is responsive to the requirements of the agency. This GIS software is a complete geospatial software platform to create, store, manage, process, visualize, and share geographic data. Tabular data comes to life on a dynamic map so the information is easy to understand, resulting in quicker and more informed decisions for national security. Raster images such as satellite images and aerial photographs are also easily integrated into the platform for a deeper and clearer understanding of the situation on the ground.

Objectives of the Project:

- To enable the agency to identify vulnerabilities to hazards and threats; enhance analysis and develop actionable intelligence to inform decision-making, planning, and operations; and real-time inter-agency collaboration.
- To enable the agency to rapidly build its capabilities for an effective national security program.
A.3 PROJECT SCOPE

The bidder should be able to supply, deliver, and setup GIS software to the NSC Data Center and provide a warranty and technical support on the product.

A.4 CONCEPT OF OPERATION

The NSC manages the operation of the PSR located at Malacañang Park in Manila. The PSR serves as the venue for monitoring security-related incidents, situations, or significant local and international developments.

The information system contains PSR reports, regular situation reports on matters of national security, and other special reports that may warrant the attention and consideration of the President. Locations indicated in those reports are encoded with the PSA geocode so as to be easily located in any given map image.

National security specialists or analysts accessing those reports have different levels of access to databases, depending on their security clearance. Duty officers and staff also have different roles or functions in the national security planning process.

The proposed project should enable analysts and duty officers to pin locations of incidents, determine areas of coverage of government support, and generate geographic images that would easily elucidate any ongoing development with national security import.

B. APPROVED BUDGET COST

The ABC is Five Million Four Hundred Sixty-Four Thousand Nine Hundred Ninety Pesos (PhP5,464,990.00), inclusive of all applicable taxes.

C. GENERAL SCOPE / BID REQUIREMENT

The NSC shall select a qualified PROVIDER/BIDDER for the procurement of GIS software that allows a user to author geographic information to examine relationships; analyze data; test predictions; and, ultimately, make better decisions.
C.1 SOFTWARE REQUIREMENT

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>QUANTITY*</th>
<th>Est. Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ArcGIS for Desktop Advanced Concurrent Use License</td>
<td>2</td>
<td>3,541,960.00</td>
</tr>
<tr>
<td>2</td>
<td>ArcGIS for Desktop Standard Concurrent Use Upgrade from ArcGIS for Desktop Basic Single Use (Primary)</td>
<td>1</td>
<td>684,900.00</td>
</tr>
<tr>
<td>3</td>
<td>ArcGIS for Desktop Standard Concurrent Use Upgrade from ArcGIS for Desktop Basic Single Use (Secondary)</td>
<td>1</td>
<td>658,650.00</td>
</tr>
<tr>
<td>4</td>
<td>ArcGIS Geostatistical Analyst for Desktop Concurrent Use License</td>
<td>1</td>
<td>289,740.00</td>
</tr>
<tr>
<td>5</td>
<td>ArcGIS Spatial Analyst for Desktop Concurrent Use License</td>
<td>1</td>
<td>289,740.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>5,464,990.00</td>
</tr>
</tbody>
</table>

*The software license includes at least one (1) training participant per license.

C.2 TECHNICAL SPECIFICATIONS

The bidder shall supply and deliver desktop GIS software for authoring, editing and analysis of spatial information. It must have the following capabilities:

1. It shall provide tools to allow users to navigate maps and interact with the data layers in it;
2. It shall have map display and visualization capabilities;
3. It shall provide tools to create and edit map features and its attributes;
4. It shall support multiuser geodatabase editing;
5. It shall support versioning geoprocessing;
6. It shall have labeling capabilities which includes creating text annotations, create dynamic on-the-fly labels, supports and conflict detection and label placement;
7. It must be able to perform spatial analysis that help identify patterns, make predictions, and answer complex questions;
8. It must provide options to export maps into printable and shareable formats should be available.
9. It must have tools to improve the users' productivity by streamlining editing, geoprocessing, and analysis workflows;
10. It shall provide tools for Geoprocessing;
11. It shall be able to analyze maps for errors, unsupported content, performance
tips;
12. It shall be able to preview maps and estimated rendering time and shall have
GPS support
13. It shall have an intuitive interface; customizable; access to online basemap
services like imagery, streets, topographic, terrain, etc.;
14. It shall include access to online task services such as Geocoding, Routing, and
Geometry Services;
15. It shall be able to standardize cartographic production and shall support
enterprise cartographic workflows that conform to the required cartographic
standards
16. It shall be able to Pan, Zoom, and Rotate the Map;
17. It shall be able to Find an X,Y (LatitudeLongitude) Location on a Map;
18. It shall be able to Zoom to the Full Study Area of the Map;
19. It shall be able to Zoom to the Extent of a Layer;
20. It shall be able to Zoom to the Visible Scale of a Layer;
21. It shall be able to Zoom to a Specific Map Scale;
22. It shall be able to use Spatial Bookmarks;
23. It shall be able to access Hyperlinks;
24. It shall be able to use Dynamic MapTips;
25. It shall be able to use Magnification Window;
26. It shall be able to interactively reveal areas beneath a Specific Layer (Swipe);
27. It shall be able to save and manage locations for use with multiple maps;
28. It shall be able to Create, Organize, and Share Spatial Bookmarks;
29. It shall be able to Pan and Zoom the Map with the Mouse Wheel;
30. It shall be able to Pan and Zoom to Selected Features;
31. It shall be able to Switch Any Tool to a Pan/Zoom Tool Using Hot Keys;
32. It shall be able to Create Hyperlink to External Application, Macro, or URL;
33. It shall be able to use Overview Window;
34. It shall be able to use Viewer Windows for Displaying Different Parts of a Map;
35. It shall be able to use Multiple Viewer Windows for Separate Data Frames
36. It shall be able to identify Features in the Map;
37. It shall be able to interactively Measure Distances and Areas;
38. It shall be able to find Features in the Map;
39. It shall be able to find an Address by Using Local or Custom Locators;
40. It shall be able to show Related Data with Field Properties;
41. It shall be able to View and Toggle Layer Selectability in Table of Contents;
42. It shall be able to Select Data by Location;
43. It shall be able to Select Data by Attribute;
44. It shall be able to Interactively Select/Unselect Features;
45. It shall be able to Unselect All, Switch the Selection, or Select All Features;
46. It shall be able to Access Attribute Table and Layer Properties from Identify Dialog Box;
47. It shall be able to Flash, Zoom to, Pan to, Select, and Identify Individual Features in a Map Based on a Record in the Attribute Table;
48. It shall be able to Interactively Highlight Selected Records/Features;
49. It shall be able to Zoom to and Unselect Highlighted Records/Features;
50. It shall be able to Interactively Add and Remove Records from a Selection;
51. It shall be able to Copy Selected Records for Pasting into Other Applications;
52. It shall be able to Turn Fields Off and On and Change Field Order and Size;
53. It shall be able to Modify a Table's Appearance by Changing Cell and Field Size, Font, and Color;
54. It shall be able to Use Field Properties of Joined Tables;
55. It shall be able to Reorder Fields;
56. It shall be able to See Properties of Joins and Relates from Table Properties
57. It shall be able to Sort a Table by Multiple Fields;
58. It shall be able to Drag Multiple Tables into the Table Window as Tabs
59. It shall be able to Create a Graph or Report;
60. It shall be able to Find and Replace Attribute Values;
61. It shall be able to Plot Data from a Variety of Datasets in a Single Graph;
62. It shall be able to Create 2D and 3D Graphs;
63. It shall be able to Overlay Multiple Graphs in a Single Graph;
64. It shall be able to have selections automatically propagate between Map, Table, and Graph;
65. It shall support Horizontal and Vertical Bar, Line, and Area;
66. It shall support Histogram Bar graph type;
67. It shall support Scatterplot graph type;
68. It shall support Scatterplot Matrix graph type;
69. It shall support Box Plot graph type;
70. It shall support Bubble graph type;
71. It shall support Polar graph type;
72. It shall support Pie graph type;
73. It shall be able to analyze Map for Potential Display Optimizations;
74. It shall be able to visualize the Map Page or a Specific Set of Data;
75. It shall be able to perform On-the-Fly Projection of All Data;
76. It shall be able to set Spatial Reference by Selection, Name Filter, or Spatial Filter;
77. It shall be able to set Custom/Compound Datum Transformation for Your Map Extent;
78. It shall be able to enable Full Cartographic Visualization of Any PMF File;
79. It shall be able to interactively Set Percent Transparency for All Data Layers;
80. It maps shall have Legends that honor layer transparency
81. It shall be able to set a Minimum and Maximum Scale to Display Data;
82. It shall be able to create Custom Relative Scales;
83. It shall be able to clip the Map Display to a Feature or Graphic
84. It shall be able to create Graticules, Measured Grids, and Reference Grids;
85. It shall be able to create Extent Rectangles for Other Data (Reference and Overview Maps);
86. It shall be able to Create Variable Depth Layer Masking;
87. It shall be able to Convert Graphics (Point, Line, Polygon, Text) to Features;
88. It shall be able to create high-performance Basemap layers computed once for any area;
89. It shall be able to add Data Menu Accesses Basemaps and Data from GIS Online;
90. It shall have Quick Pan Mode for Continuous Navigation of Basemap and Accelerated Raster Layers;
91. It shall be able to create On-the-Fly Dynamic Joins between Different Databases
92. It shall be able to join Dialog Box Supports Join Validation prior to Execution;
93. It shall be able to create and Use Many-to-One and One-to-Many Relationships;
94. It shall be able to create statistics;
95. It shall be able to summarize data;
96. It shall be able to calculate field values of all or selected rows;
97. It shall support Chart Mapping Including Pie and Bar Charts
98. It shall support Bivariate and Multivariate Data Rendering
99. It shall support Interactive Histogram for Data Classification
100. It shall use an interactive symbol composer;
101. It shall control symbol draw order;
102. It shall have an available library of predefined symbols;
103. It shall search for symbols by descriptive tag;
104. It shall add or modify symbol search tags;
105. It shall use halos and comply (Y/N) background symbols;
106. It shall define symbols for fill, lines, outlines, and points;
107. It shall support user-imported picture symbols (PNG, JPEG, GIF);
108. It shall support TIN Contour with Index Contours;
109. It shall support TIN Face, Aspect, Elevation, Slope;
110. It shall support Digital Elevation Model (DEM) Hillshade with Sun Position Control;
111. It shall support DEM Shaded Relief Using Hillshade and Elevation;
112. It shall support Terrain Contour with Index Contours;
113. It shall support Terrain Face, Aspect, Elevation, Slope;
114. It shall support DEM Elevation;
115. It shall Display Multiband Images by Assigning Color Values to the Bands;
116. It shall display raster products from Image Sensor Raw Data and Metadata;
117. It shall use individual band settings;
118. It shall display each unique value with a discrete color;
119. It shall display image values using a color map;
120. It shall display Multiband Raster Data Using Color Values;
121. It shall save current display statistics;
122. It shall control raster display contrast and brightness;
123. It shall support On-the-Fly Orthorectification;
124. It shall support On-the-Fly Panchromatic Sharpening;
125. It shall support On-the-Fly Hillshade Effect for Elevation Data;
126. It shall display Raster Catalog Tiles as a Time Series;
127. It shall import Renderer or Statistics from Another Layer;
128. It shall display Raster Values While Navigating the Map with MapTips;
129. It shall display Raster Resolution in Map Table of Contents;
130. It shall apply and edit raster function chains;
131. It shall support accelerated display mode for raster layers;
132. It shall support Standard Deviations;
133. It shall support Histogram Equalize;
134. It shall support Interactive Histogram;
135. It shall support Minimum–Maximum;
136. It shall support Custom;
137. It shall support None;
138. It shall support Stretch (Modified Sigmoid);
139. It shall support Bovey;
140. It shall support Gram-Schmidt;
141. It shall support IHS (Intensity Hue Saturation);
142. It shall support Simple Mean;
143. It shall support Raster Display Statistics;
144. It shall support based on the Entire Raster Dataset;
145. It shall support based on the Display Extent;
146. It shall support based on a Custom Extent;
147. It shall support based on an Automated Sampling of Pixels;
148. It shall support Nearest Neighbor;
149. It shall support Bilinear Interpolation;
150. It shall support Cubic Convolution;
151. It shall support Majority;
152. It shall support Manual Interval;
153. It shall support Equal Interval;
154. It shall support Defined Interval;
155. It shall support Quantile Interval;
156. It shall support Natural Breaks (Jenks);
157. It shall support Geometrical Interval;
158. It shall support Standard Deviation;
159. It shall support Footprints Only;
160. It shall support Selected Footprints;
161. It shall have a Pixel Inspector;
162. It shall have a Swipe Layer Tool;
163. It shall have an Image Analysis Window;
164. It shall create Time Series, Layer Transition, or Map Navigation Animation;
165. It shall Animate Data Change with Tabular (Charts), Vector, Raster Catalog, and NetCDF Data;
166. It shall export Animations as Sequential Images;
167. It shall create Video from Sequential Images;
168. It shall view Temporal Data with the Time Slider;
169. It shall view Live Temporal Data in Real Time;
170. It shall support for Title map element;
171. It shall support for Text map element;
172. It shall support Neatlines;
173. It shall support Legends (May Be Dynamically Generated from Features in the Map);
174. It shall support for North Arrows;
175. It shall support for Scale Bars (May Be Multiple Scales with a Common Zero Anchor);
176. It shall support for Scale Text;
177. It shall support for Pictures;
178. It shall support for OLE Objects;
179. It shall support for Measured Reference Grid;
180. It shall support for Graticules;
181. It shall support Enhanced Metafile (EMF);
182. It shall support Windows Bitmap (BMP);
183. It shall support Encapsulated PostScript (EPS);
184. It shall support Tagged Image File Format (TIFF);
185. It shall support Portable Document Format (PDF);
186. It shall support Joint Photographic Experts Group (JPEG);
187. It shall support Portable Network Graphics (PNG);
188. It shall support Graphic Interchange Format (GIF);
189. It shall support Scalable Vector Graphics (SVG);
190. It shall support Adobe Illustrator (AI);
191. It shall support PostScript Color Separates (with Page Marks);
192. It shall support for Windows;
193. It shall support for PostScript;
194. It shall support for ArcPress™ HP RTL (RGB, CMYK, and Monochrome);
195. It shall support for ArcPress Epson Universal;
196. It shall support for ArcPress HP Universal;
197. It shall be able to process Print Jobs on a Local Machine for Faster Printing;
198. It shall be able to analyze maps for errors, unsupported content, performance tips;
199. It shall be able to create Basemap layers for static background data;
200. It shall be able to preview maps and estimated rendering time;
201. It shall be able to publish a map to the GIS Server;
202. It shall be able to consolidate layers, maps, locators, or results into a folder;
203. It shall be able to create a layer package file;
204. It shall be able to extract a Layer Package;
205. It shall be able to create a map package file;
206. It shall be able to extract a map package;
207. It shall be able to share a map as a service to an Enterprise or Cloud Server;
208. It shall be able to search for maps, data, and tools in Local, Enterprise, or Cloud Sources;
209. It shall be able to share map tile caches to Local, Enterprise, or Cloud Users;
210. It shall be able to create and share Geoprocessing Results as Packages;
211. It shall be able to create and share Geoprocessing Results as Services;
212. It shall be able to create and share Locator Packages;
213. It shall be able to export and print maps;
214. It shall be able to manage documents and layers;
215. It shall be able to create and manage map Series and Books;
216. It shall be able to export reports;
217. It shall be able to create and analyze map service definitions;
218. It shall be able to convert web map JSON to map document;
219. It shall be able to Set Default Label Engine and Font Name for Your Map Document;
220. It shall be able to Create Dynamic On-the-Fly Labels;
221. It shall support Automatic Conflict Detection and Label Placement;
222. It shall have label placement rules for setting priority between layers;
223. It shall have placement rules for setting importance of labels vs. features;
224. It shall have predefined label styles;
225. It shall support Labels Rotate from an Attribute Field;
226. It shall support Multiple Dynamic Labeling Schemes Built for Each Map Layer;
227. It shall be able to control which features in a layer display labels;
228. It shall support Comply (Y/N) Text Formatting Tags for Dynamic Label Symbology;
229. It shall be able to Add Logic to Label Expressions with JScript, Python, and VBScript;
230. It shall be able to use Interactive Label Tools (Callout, Label, Spline, and Paragraph Text);
231. It shall be able to create text annotation data from labels
232. It shall be able to interactively Move, Rotate, and Scale Annotation
233. It shall be able to add horizontal or angled annotation
234. It shall be able to add annotation with a leader line
235. It shall be able to create annotation that follows a curved line or the shape of an existing feature;
236. It shall be able to dynamically pull annotation values from layers in the map;
237. It shall be able to interactively manage annotation that could not be placed during Initial Annotation Creation;
238. It shall be able to edit each word in an annotation string independently;
239. It shall be able to interactively stack and unstack annotation;
240. It shall be able to flip annotation strings;
241. It shall be able to interactively modify the curvature and orientation of a line;
242. It shall be able to edit the symbology of a single annotation feature or a group of annotation features simultaneously;
243. It shall be able to store annotation in a geodatabase or a map document;
244. It shall be able to create annotation subclasses;
245. It shall be able to create aligned dimensions displaying the true distance between points;
246. It shall be able to create linear dimensions displaying horizontal, vertical, or an angled distance between points;
247. It shall be able to create and edit feature-linked annotation feature classes in a geodatabase;
248. It shall be able to create Advanced Labels;
249. It shall support advanced Python Expression Parser;
250. It shall support Street Placement;
251. It shall support customizable dynamic stacking;
252. It shall support font reduction;
253. It shall support customizable abbreviation and label white space management;
254. It shall support polygon boundary placement;
255. It shall support repeated labeling;
256. It shall support character spreading;
257. It shall support word spreading for polyline and polygon labels;
258. It shall support label overrun on features;
259. It shall support curved polygon placement;
260. It shall support graticule labeling alignment;
261. It shall support user-defined point label zones;
262. It shall support background labeling;
263. It shall support land parcel placement;
264. It shall support advanced feature weighting;
265. It shall support advanced label offsets;
266. It shall support advanced line label positions;
267. It shall support advanced curved label placement;
268. It shall support watermark-style background labels;
269. It shall support geologic strike and dip symbology;
270. It shall support Asian vertical text metric support;
271. It shall support polygon hole avoidance for callouts;
272. It shall support polygon zone (Internal, External) placement;
273. It shall support long boundary label repetition;
274. It shall support logically continuous feature (Street, River, Contour) placements;
275. It shall support label fitting by key numbering into an overflow table;
276. It shall be able to store multiple representations of GIS features in a geodatabase for use in a variety of map products;
277. It shall be able to create rules that dynamically manipulate the geometry and symbology of a feature;
278. It shall be able to share representation rules through style files;
279. It shall be able to change the shape or symbology for a single feature without changing the GIS data it represents;
280. It shall be able to define feature visibility and transparency for each feature or based on an attribute;
281. It shall be able to mask individual features or parts of features without masking all features in a layer;
282. It shall be able to dynamically place point symbols along lines or polygons;
283. It shall support various geometric effects;
284. It shall support the following interactive editing of symbols:
 o Wave
 o Use the Marker Editor to Edit the
 o Characteristics of a Point Symbol
 o Edit the Entire Representation or a Small
 o Portion of One or More Representations
 o Move an Entire Symbol
 o Move Line Symbols Parallel
 o Tool Dialog Boxes Accept Multiple Units of Measurement
 o Add, Delete, or Move Symbol Vertices
 o Modify the Geometric Effects of a Symbol: Line Width, Hatch Size
 o Move Linear Geometries Parallel
 o Reshape and Move a Feature to Align One Specified Point with Another (Warp)
 o Erase All or Part of a Symbol
 o Resize a Feature Symbol by Resizing Its Bounding Box
 o Resize a Feature and Its Geometric Effects Simultaneously Using a Ratio
 o Rotate Feature Symbols Interactively or by a Specific Angle
 o Orient a Symbol to a Specific Angle
 o Reshape Symbols with Bézier Curves
 o Specify Locations along a Symbol Where a Pattern Must Apply (Control Points)
 o WYSIWYG Feedback
285. It shall have the following graphic quality geoprocessing tools:
 o Detect Graphic Conflict
 o Propagate Displacement
 o Resolve Building Conflicts
 o Cul-de-Sac Masks
 o Feature Outline Masks
 o Intersecting Layers Masks
286. It shall have the following representation management geoprocessing tools:
 - Add Representation
 - Calculate Representation Rule
 - Drop Representation
 - Remove Override
 - Select Feature by Override
 - Set Layer Representation
 - Update Override

287. It shall have the following symbolization refinement geoprocessing tools:
 - Align Marker to Stroke or Fill
 - Calculate Grid Convergence Angle
 - Calculate Line Caps
 - Calculate Polygon Main Angle
 - Create Overpass
 - Create Underpass
 - Disperse Markers
 - Set Representation Control Point at Intersect
 - Set Representation Control Point by Angle

288. It shall have a geocoding toolbar for locator management and use;

289. It shall support single line input for GIS locators;

290. It shall be able to geocode single or batch addresses;

291. It shall be able to find address within current map extent;

292. It shall support real-time batch geocoding match rate feedback;

293. It shall be able to use tools for processing result sets, including custom queries;

294. It shall be able to use GIS server for server-based geocoding;

295. It shall be able to use Multiple Geocoding Locators per data source;

296. It shall be able to geocode using alternate street names, intersection, or place-name aliases;

297. It shall be able to aggregate multiple geocoding locators into a single geocoding locator (composite locator);

298. It shall be able to distribute geocoding locators without the reference data;

299. It shall be able to edit runtime properties with address locator properties dialog;

300. It’s address inspector finds address by map click;

301. It shall be able to drag locators into map from the catalog window

302. It shall have built-in data less military grid reference system (MGRS) locator;

303. It shall be able to create dynamic features from geocoded locations;

304. It shall have access to an online locator service;
305. Consolidate Locator;
306. Create Address Locator;
307. Create Composite Address Locator;
308. Geocode Addresses;
309. Package Locator;
310. Reverse Geocode Point Features;
311. Rebuild Address Locator;
312. Rematch Addresses;
313. Standardize Addresses;

D. PROJECT MANAGEMENT

BIDDER'S ELIGIBILITY REQUIREMENT

D.1. Bidder must be Certified Sales Partner/Reseller of the product offered to ensure of its technical expertise on the offered solution.

D.2. Bidder should provide certificate that it has 8x5 technical support capabilities. Bidder should identify the person responsible and provide his/her contact details, i.e., name, position, contact numbers, and email addresses.

E. WARRANTY AND MAINTENANCE

The Bidder shall provide a one year warranty of the product from the date of purchase, with free upgrade in case there will be a new version released before the warranty expires. They shall also provide a one-year maintenance and technical support from the date of original purchase to include replacement of software media.

F. SCHEDULE OF DELIVERABLES

The delivery of the items for the Supply and Delivery of GIS software shall be within seven (7) calendar days upon issuance of corresponding Notice to Proceed (NTP).

G. INSTITUTIONAL REQUIREMENTS

a. The winning bidder shall coordinate with concerned personnel of the Information Management Office (IMO) and Management Information Systems Division
(MISD) for the conduct of any activity related to the fulfillment of their obligations to the NSC.

 b. The bidder shall warrant that it shall conform strictly to the terms and conditions of this Terms of Reference.

 c. The bidder must be an authorized distributor or partner of the manufacturer, as attested by a notarized original copy of certification to be submitted to the Chairman, NSC Bids and Awards Committee. The certification should be on stationery bearing the letterhead of the manufacturer and signed by the authorized person representing said manufacturer.

H. REMUNERATION AND TERMS OF PAYMENT

The full payment shall be within 30 days from the delivery of products and conducts of services.

I. PENALTY CLAUSE

In case of failure to complete the project within the time specified, a penalty of one-tenth of one percent (1/10 of 1%) of the total contract price for every day of delay shall be imposed. It is construed that the GIS Software and Services Project shall be made and completed within thirty (30) calendar days from the date of the issuance of the Notice to Proceed.
Terms of Reference
Version 1.0

Procurement of Geographic Information System (GIS) Software and Services

Prepared by:

Annabelle C. Ragsac
BAC-TWG

Jed Patrick P. Juntereal
End-user Representative

Federico Horiberto C. de la Llana
BAC-TWG

Marielle B. Miguel
End-user Representative

Raymund Fulge M. Angat
BAC-TWG

Michael Armand P. Canilao
End-user Representative

Rizalino G. Nasayao III
BAC-TWG

Aisa Faith F. Ignacio
End-user Representative

Endorsed by:

Ma. Victoria C. Castro
Assistant Director General,
BAC Member & End-User

Approved by:

Filonila D. Balitaan
Assistant Director General
and BAC Chairman